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Abstract

Humans regularly make adaptive inferences that go far beyond the data they observe.
Structure learning – the abstraction of relational invariance from data – is one process
thought to underlie this capacity. Compositional inductive bias, the tendency to
represent complex structure as a composite of simpler structures, is a common feature
of the predominant models of structure learning. Further, computational models
without this bias are sample inefficient and relatively inflexible, suggesting that
compositionality may be a necessary computational requirement for structure learning.
Graph networks can flexibly represent diverse structures in a compositional way. Using
graph networks in the reinforcement learning context may offer a powerful and tractable
framework for furthering our understanding of structure learning across domains.

Our emotional, personal, and
intellectual characteristics are not the
mere algebraic summation of a near
infinity of stimulus-response bonds.
The learning of primary importance
to the primates, at least, is the
formation of learning sets; it is the
learning how to learn efficiently in the
situations the animal frequently
encounters. This learning to learn
transforms the organism from a
creature that adapts to a changing
environment by trial and error to one
that adapts by seeming hypothesis
and insight.

H.F. Harlow, 1949 [35]

Structure learning carves an adaptive hypothesis
space

Akin to Plato’s observers drawing inferences of form from the play of shadows cast by
unobservable objects [68], humans regularly infer structure from variable input in
domains as diverse as sensorimotor learning and concept learning [88]. This structural
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Figure 1. Economizing inquiry. A) An unbiased hypothesis space. Here, any
combination of changes in azimuth or altitude are equally viable to explore. B) Adaptive
mappings learned over time to oppose variable wind velocities. C) After learning variable
mappings, the archer learns to explore a biased (azimuthal) hypothesis space. Limiting
the hypothesis space to azimuthal changes in aim allows for faster adaptation to novel
perturbations because the task is reduced to reparameterizing a learned function rather
than learning a new function. Figure adapted with permission from [11].

inference is thought to rely on the isolation of features invariant to the task at
hand [13,40]. For example, we know that chairs have signature component features (e.g.
armrests, a seatpan, a back rest, and four legs), independent of the particular
parameters of those features. This isolation of invariance places constraints on the
viable space of hypotheses for faster recognition or adaptation [3]. In other words, if you
know that a chair has a set of invariant features, you should be able to more quickly
recognize the novel object before you as a chair, even if you have never seen a chair with
that seatpan depth or back rest height. Put differently, learning a structure is analogous
to model discovery; for any given input, the output follows the structure defined by the
functional form. Under this analogy, learning the form of the function thus places a
constraint on the set of possible solutions given any input. Assuming that the learner
approximates a useful function for a given context, the range of possible outputs is thus
drastically reduced from a tabula rasa prediction in which the hypothesis space is
unbiased.

Imagine a novice archer attempting to hit a target on a windy day. At first, she may
not know how to counteract the wind – whether she should aim side-to-side or
up-and-down. Her hypothesis space may be unbiased, with an equal probability of
exploring a change in azimuth or a change in altitude (Fig. 1A). Now consider a single
scenario in which the crosswind approaches from the left. She learns to adapt by aiming
her arrow to the right with sufficient magnitude to counter the wind. Adaptation to this
isolated learning situation represents an instance of strictly parametric, or associative
learning. In this case, her previously unbiased hypothesis space shrinks to a single
input-output mapping (Fig. 1B). Alternatively, if she is exposed to crosswinds with
varied velocities, then she learns the general principle that she should aim her arrow
opposite to the wind. After learning this principle, she is capable of quickly opposing
novel wind velocities because her hypothesis space is now constrained to azimuthal
changes in aim (Fig. 1C). In this way, structure learning economizes inquiry [64] by
carving a hypothesis space consistent with the structure of invariant task features.

Structure learning has been broadly classified into learning three primitive structural
forms: functions, clusters [48] and features [27,40]. Learning a function is learning the
relationship between two or more continuous variables. In the archery example this
would correspond to learning the relationship between azimuth and altitude that
opposes a wind perturbation. Here, the computational goal can be reduced to learning
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the function y = f(x) using a noisy set of observations X = (x1...xn) + ε and their
outcomes Y = (y1...yn) [4]. In statistics, this is a regression problem [38]. Cluster
learning is the problem of how to group observations into discrete units [38] and can be
related to category learning [74], word segmentation [30], causal inference [26], and
associative learning [28]. One example of cluster learning is deciding whether, an animal
that has a tail and floppy ears is a dog. Cluster learning can be considered a density
estimation problem [4]. In this case, what is the probability that this animal is a dog
given these perceptual features? Given that we know the probability of an animal
having a tail and floppy ears given that it is a dog; the probability that we encounter
dogs; and the joint probability that we encounter those features, we can estimate the
probability that this animal is a dog using Bayes’ rule (see Nonparametric Hierarchical
Bayesian Models (NPHBM) for more detail). Feature learning is the problem of how to
define a perceptual unit or assign attributes to a stimulus [4]. Using the dog example,
this is asking the question of how we represent a dog as a given set of perceptual
features (a tail and floppy ears). Feature representation can be related to choice
behavior and similarity judgements [69], and object recognition [67]. The computational
problem of feature learning can be thought of as a factorization problem, with links to
dimensionality reduction techniques [38]. Functional, cluster-based, and featural
primitives can be recombined to capture a set of more complex structures or
models [22,80] (Fig. 2).

In an attempt to advance the understanding of structure learning as a
domain-independent feature of human learning, I review the primary computational
models developed to explain structure learning across learning domains. I identify one
computational feature shared by these models and propose a powerful, tractable
framework for further developing a model containing this shared computational feature.

To impose structure on my search for computational features, I borrow the minimal
model approach to explanation from philosophy of science [8]. A minimal model isolates
conceptual commonalities among extant models, often explaining diverse expressions of
a given phenomenon. These commonalities guide the specification of one necessary –
but not sufficient – property of the phenomenon in question. This property should be
determinable, in that it is specific enough to guide experiment but abstract enough to
unite different domains of learning. This minimal model approach has been used in
cases where the phenomenon under question is underspecified or has competing
explanations [5, 98,102].

Integrating over theoretical orientations and computational architectures in this way
can be thought of as balancing the assumptions of these models with their explanatory
power.

I included theoretical perspectives on structure learning implemented as
computational models, that successfully addressed structure learning in multiple
learning domains, were described in detail sufficient to understand the algorithm, and
were recent (updated within the past 20 years).

I end the review with a set of open questions and include a glossary of key terms.
Below, I summarize the mechanisms, strengths, and weaknesses of the primary

cognitive computational models [41,61] for structure learning that meet the above
criteria.

Nonparametric Hierarchical Bayesian Models (NPHBM)

The predominant approach to modeling the computations underlying the acquisition of
structured abstractions relies heavily on the probabilistic model of cognition
framework [14,33,44]. This framework relies on a rational analysis of cognition,
outlining the computations that should be used to solve a given statistical inference
problem.
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Bayes’ rule can set a normative standard for how to update event probabilities given
known observations [9]:

p(a|b) =
p(b|a)p(a)

p(b)
(1)

Above, we can calculate the probability of an event a given that event b has
occurred, provided that we know the independent probabilities of events a and b and
the probability that event b is true if we observe event a.

Within this larger framework, Nonparametric Bayesian Hierarchical Models
(NPHBM) of cognition assume that agents solve a similar statistical inference problem,
but also account for uncertainty in the identification of structured abstractions by
updating the pool of candidate structures (H) using new observations (d) [4]:

p(h|d) =
p(d|h)p(h)∑

h′∈H p(d|h′)p(h′)
(2)

where H is the space of possible hypotheses or structures, hi is a given hypothesis or
structure, d is the observed data, p(h) is the prior probability, or the belief in the
data-generating structure prior to observing new data points, p(h|d) is the posterior
probability, or the updated belief after observations, and p(d|h) is the likelihood the
data are produced by a given structure.

Given a new observation di+1 and previous observations d, the degree of belief in the
data-generating structure can then be updated:

p(di|d) =
∑
h

p(di|H)p(h|d) (3)

where p(h|d) corresponds to the posterior probability described in Equation 2.
To concretely relate this method of updating to the discovery of a structure, consider

the problem of deciding which function among a set of functions best characterizes the
relationship between two observed continuous variables. Recall from that our
computational goal is to solve the regression problem of finding y = f(x) using a noisy
set of observations X = (x1...xn) + ε and their outcomes Y = (y1...yn). We can combine
our prior beliefs about the probability that we encountering different classes of functions
in our lives with the data we observe, x and y:

p(f |X,Y ) =
p(Y |f,X)p(f)∫

F
p(Y |f,X)p(f)df

(4)

Here p(f) is the prior distribution over classes of functions in the function hypothesis
space F . p(Y |f,X) is the likelihood of observing the Y if f were the true function, and
p(f |X,Y ) is the posterior distribution over classes of functions given X and Y .

But how do we define the function hypothesis space, F? This hypothesis space of
functions could be infinite. This is the primary flaw of Bayesian models of structure
learning. Assumptions regarding the form of the function (e.g. y = b0 + xb1) over which
we define the hypothesis space F makes our task tractable, but it also restricts our
capacity for functional form discovery.

Moreover, what if we didn’t even restrict our hypothesis space to a functional
hypothesis space and instead were completely naive to the structural form we were
encountering (Fig. 2)? Kemp and Tenenbaum [40] were able to discover not only the
parameterization of structures, but also the form of the learning problem using a set of
graph grammars as viable structural forms. Here, a Bayesian hierarchical model defined
over a space of graph grammars can discover the form (F) and structure (S) that best
characterize the data (D) by maximizing the posterior probability of a given structure
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Figure 2. The relationship between form and structure. The versatile rep-
resentational capacity of graph grammars. A) The relationship between form,
structure, and raw data. The form defines the categorical type of model learned. Struc-
ture specifies the particular instantiation of a form. Structure is learned from raw
data. Here, the raw data consist of the features f1...f100. Different animals have dif-
ferent feature compositions. The relationship between featural distributions defines
the relationship between animals. The model, or representational form selected is that
of a tree. A Bayesian hierarchical model defined over a space of graph grammars
can discover the form (F ) and structure (S) that best characterize the data (D) by
maximizing the posterior probability of a given structure and form given the data:
P (S, F |D) ∝ P (D|S)P (S|F )P (F ) [40]. B) Many primitive forms can be represented
using a graph grammar. Importantly, primitive graph grammars can be composed to rep-
resent more complex structures, as shown in the grid and cylinder graph representations.
Figure adapted from [40]. Permission pending.

and form given the data: P (S, F |D) ∝ P (D|S)P (S|F )P (F ) (Fig. 2A). Notably, graph
grammars are well-suited to represent the three primitive forms of structure learned –
clusters, features, and functions – (Fig. 2B). and using the principles of
compositionality, they can be combined to create more complex structures 2B. While
promising, this approach still relied on a predefined set of graph grammars, or a
hypothesis space of structural forms. Altogether, the problem of selecting a prior on
structural forms (also known as a hyperprior) remains for NPHBMs.

These models have successfully explained diverse phenomena [88] and, when the
structure learning problem is framed as a graph grammar discovery problem [72], these
models have been validated to detect true underlying structures [40]. For example,
when provided with distances between cities, NPHBMs have rediscovered longitude and
latitude; when given supreme court votes, NPHBMs have identified that the underlying
voting pattern of US supreme court judges lies along a left-right spectrum; and when
given sets of biological features of animals, they are clustered according to realistic
taxa [40].

Impressively, when learning novel character concepts, NHBMs can not only discover
statistical structure on par with humans, but they can also generate that structure in a
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manner often indistinguishable from human generated letters under data-limited
conditions [46]. Notably, the success of this particular instantiation of NHBM relied on
observing the composition of characters (the stroke-by-stroke character generation
process) to detect primitives.

This compositional approach to structure learning popularized subgoal discovery, or
how to solve components of learning problems, as a method for the efficient discovery of
structure in both machine learning algorithms [47] and in updating models of human
computation [22]. The specification of subgoals allows agents to navigate hierarchically
composed reinforcement learning architectures [83] to benefit transfer to novel scenarios
that share underlying structure [52,53]. Humans have also been shown to identify
subgoals during learning and reuse and recombine partial solutions for
generalization [22,79,103].

These models are useful in that they can plausibly model the consideration of
multiple hypotheses, detect true structures, use few samples in order to infer the proper
structure, and generalize sparsely observed properties [25]. The issue with these
nonparametric models of structure learning is that they are of limited use when the task
becomes complex and as observations increase because the set of possible hypotheses
that could account for the observations expands intractably. However, the specification
of prior knowledge and the selection of efficient search algorithms can constrain the set
of considered hypotheses [89].

Note that this approach hinges on the assumption that the language of probability
represents subjective belief and captures the dynamics of belief updating. Specifically, it
assumes that degrees of subjective belief can be described in terms of probability and
that belief updates according to the laws of probability.

Limitations notwithstanding, ample evidence exists to suggest that these models are
a useful stand-in for human structure discovery, with human-level performance achieved
in learning concepts, causal inference, how to parse motion, and more [88].

In sum, NPHBMs can discover the primitive forms of structure, can exploit
compositionality to discover complex structures composed of primitive forms and aid
generalization, and they have been applied to an expansive set of learning domains.

The Tolman-Eichenbaum Machine (TEM)

When Tolman introduced the concept of cognitive maps [90], he introduced the concept
of latent learning, particularly in terms of latent relational representations that go
beyond stimulus-response association. The bulk of research citing Tolman’s effects and
his theoretical interpretation have been justifiably used to support the idea of spatial
maps [62] and their corresponding neural representations of space [21]. Recent findings
suggesting that the neural encoding of spatial maps also represent nonspatial
features [2, 15] have prompted the re-examination of Tolman’s cognitive maps to study
relational structure at the level of knowledge organization for nonspatial inference in
both humans and machines [10,97], with empirical support for the idea that the
reorganization of knowledge in terms of cognitive maps aids generalization to shared
knowledge structures [39,51,55].

Recently, spatial and relational memory have been united in an artificial neural
network model of the hippocampal-entorhinal system termed the Tolman-Eichenbaum
machine (TEM) [97]. This model proposes that medial entorhinal cells encode
structural knowledge and hippocampal cells link this encoding with sensory
representations. Within this framework, both relational and spatial reasoning can be
considered as forms of structural generalization. Structural features of nonspatial
problems also facilitate adaptive inference. For example, when presented with a
transitive inference problem [36] (if A > B and B > C, how does A compare to C?), the
concept of a linear system of magnitude enables the needed inferential leap (A must be
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> C). Likewise, if the learner’s task is to find the shortest path back to a starting point
using only movements in the cardinal directions (North, South, East, West), then the
knowledge that we live in three-dimensional Euclidean space allows us to infer that
moving South, East, North, and then West will bring us back to the starting point using
the minimal number of cardinal movements [97].

As mentioned in Nonparametric Hierarchical Bayesian Models (NPHBM),
representing knowledge in terms of components, or factorizing knowledge, and
recombining those components enables combinatorial generalization. Factorized sensory
representations are encoded in the lateral entorhinal cortex and factorized spatial
representations are encoded in the medial entorhinal cortex [54]. TEM demonstrates
that novel compositions of factorized sensory and spatial representations can build a
relational memory system capable of generalizing over both space and relational
structures [97].

Here an unsupervised learning agent is tasked with predicting the next image in a
sequence with a particular transition probability (note that this learning agent is not
tasked with action selection as the actions are provided; it is simply asked to predict the
next image in the sequence). The transition probability is defined over a directed graph
structure, where each node represents an image, edges represent transition probabilities
between images, and the transition between images is unidirectional.

While the full TEM algorithm is out of the scope of this paper, the two key features
are the graph-based representations of a path between images and relational memories
that bind the abstraction of a location to particular sensory experiences (images).
Relational memories combine factorized sensory representations (images) with factorized
structural representations (location). Note that TEM is not a graph neural network [75]
and has no representation of edges or nodes. Graph structures only represent the
structure of the problem.

The full TEM model includes an inference model, an artificial neural network that
learns network-level weights via backpropagation and synaptic weights via Hebbian
learning, and a generative model. The inference model is fed sensory data at each time
step. The inference model is so called because it infers the location (gt) and the
composition of the location g with sensory experience x as a ”sensorially” grounded
variable p. Thus, p is the composition of sensory experience with abstract relational
knowledge. At each time step, the inference model infers g before inferring p and the
generative model calculates a prediction error for the inferred variables. Specifically, the
generative model compares gt to its prediction of gt−1, its prediction of pt from gt, and
its prediction of xt from pt. This results in sensory prediction errors (x), abstraction
errors (g), and compositional errors (p). After an image sequence ends, these prediction
errors are accumulated and both the inference model and the generative model update
their parameters and return to the cycle of computation with the next set of images.

While this model is quite complex relative to the others reviewed here, it provides
another demonstration of the utility of compositional representations but for both
spatial and relational generalization. Theoretically, TEM should be able to learn
functions, clusters, and features, as these structures can be represented using graphs (see
Fig. 2 and The Graph Neural Network (GNN) as a framework for developing a minimal
model of structure learning), but this is a relatively new model and this capacity has yet
to be tested. However, the current instantiation of TEM can learn and generalize not
only spatial tasks, but tasks reliant on abstract relational structure. This includes
transitive inference tasks in which TEM generalizes learned relationships independent of
sensory features and learns social hierarchies to generalize to unseen relationships.
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The Successor Representation (SR)

In the reinforcement learning context, the concept of cognitive maps encoding relational
structure of the environment has recently re-emerged as an updated version [59] of the
successor representation [17]. The successor representation (SR) is a reinforcement
learning algorithm that builds a predictive map of the environment to summarize the
relationship between states separated by multiple state transitions. To accomplish this
long-range prediction of state, the SR occupies an intermediate position on the
model-based to model-free continuum of reinforcement learning, balancing the tradeoff
between biased and flexible decision-making [24]. Unlike standard temporal difference
learning algorithms that operate over prediction errors in value (Eqn. 5), the SR can be
learned via a form of temporal difference learning using the difference between observed
and predicted state occupancy as the error signal [56] (Eqn. 6).

Standard model-free reinforcement learning updated using temporal difference
learning:

V (S) = V (S) + α(Robserved + γV (snew − V (S)) (5)

The successor representation updated using temporal difference learning:

M(S) = M(S) + α(onehot(snew) + γM(snew −M(S)) (6)

Here M represents the successor representation matrix. The onehot(snew) keeps
track of state visitation. When the agent visits a new state, one visit is added to the
count of visits to that state in the row corresponding to that state in M . The sucessor
prediction error is the difference between the expected successor of state s from
predictive horizon discounted sucessors of the new state. A learning rate α applies to
the prediction error.

Offline replay, a memory process in which the hippocampal network internally
generates patterns of activation representing compressed versions of prior
experience [82], has been suggested to combine current experience with previous
memories [65] to guide future behavior [57,58]. Offline replay is not solely a repetition
of the past, but a dynamic process sensitive to goal-specification [66] that reverses in
response to prediction error [1]. Specifically, human and animal studies have shown a
role for offline replay in inferring latent environmental structure [58,101]. Combining
SR with a family of reinforcement learning algorithms called Dyna [84] (SR-Dyna)
shows promise as a computational framework for learning relational structure [73]. Here,
the predictive map learned by the SR is learned online and state transitions are
replayed offline. Mounting evidence supports the plausibility of SR-Dyna in both
humans and rats as a computational basis for reinforcement learning [18,59].

Finally, the successor representation can be decomposed into successor features,
which abstract successor representations from their context to define primitive
components of state representation [56]. This decomposition allows the agent to
generalize to tasks that require similar component features [53, 56]. As mentioned in the
previous section, the complexity of the hierarchical reinforcement learning problem can
be drastically reduced by defining subgoals, or “options” [83]. Similarly, decomposing
successor features compactly represents abstracted subroutines to reduce the complexity
of the problem space while maintaining a state-based representation, and, due to the
recombinant nature of these features, this also increases the span of tasks to which the
successor representation can generalize because multiple task solutions can be
represented as the linear combination of features [52,53].

While the SR shows great promise, the range of applications is limited in comparison
to NPHBMs. While they can represent functions and features [56], it remains to be seen
whether they can represent clusters. Despite this, they provide another computational
data point for the importance of compositional inductive bias for structure learning.
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Minimal representational recipe for an agent to
flexibly learn structure

Bayesian approaches to cognition [88] (Nonparametric Hierarchical Bayesian Models
(NPHBM)), the recently developed Tolman-Eichenbaum machine [97](The
Tolman-Eichenbaum Machine (TEM)), and the successor representation [56]The
Successor Representation (SR) have been successfully developed to describe structure
learning in a range of psychological domains (Fig. 5). Among these models only
Bayesian approaches are clearly capable of representing all three forms of primitive
structure and composing those representations to create more complex forms of
structure. However, compositional inductive bias is common to all of these successful
models, suggesting that it may be important for structure learning.

Standard metalearning algorithms can form useful inductive biases, but they remain
insensitive to compositional structure (even when trained directly on compositional task
distributions), encoding statistical structure instead of compositional
representations [32]. Additionally, it is easier for these standard metalearning models to
learn noncompositional distributions. In contrast, as mentioned throughout this paper,
humans form compositional representations that allow for flexible recombination for
sample-efficient generalization to complex learning scenarios. When the utility of
compositionality is viewed in light of the diminished capacity of standard metalearning
models to learn efficiently when they do not have architectures compatible with
compositional learning [31], an argument could be made for compositional inductive
bias as necessary to flexibly learn diverse structured representations.

A minimal model isolates the common features of computational models that explain
diverse expressions of a given phenomenon. These common features guide the
specification of one necessary – but not necessarily sufficient – property of the
phenomenon in question. Further this property should be determinable: sufficiently
descriptive to form a concrete criterion but abstract enough that it can be further
refined for the purpose of further theoretical development [8, 98].

A model specifying compositional inductive bias as a primary computational feature
meets the criteria for a minimal model of explanation. First, compositional inductive
bias is a primary feature of all dominant computational models of structure learning,
which address the structure learning problem in diverse learning contexts (see Domains
of Application in Fig. 5). Computational architectures without this feature are sample
inefficient and less flexible in generalization, suggesting necessity. Finally, the concept of
compositional inductive bias is general enough to apply to structure learning problems
in diverse domains and specific enough to refine the development of experiments and
computational models. For the remainder of the paper, I develop the case for graph
neural networks [7] as a framework for developing a minimal model of structure learning
featuring compositional inductive bias.

The Graph Neural Network (GNN) as a framework
for developing a minimal model of structure learning

Battaglia and colleagues present a hybrid of graph-structured representations and deep
learning in the form of a graph neural network [7]. While artificial intelligence attempts
have traditionally viewed symbolic, or structured representations as in opposition to
connectionist “end-to-end” approaches, graph networks leverage a priori structure and
emergent representations as complements. Graph networks use strong relational
inductive biases in the form of architectural assumptions within deep learning
architectures to capture elemental entities, relations, and rules for compositional
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C

Figure 3. Graph Neural Networks. A) A graph-structured representation. A graph
is composed of nodes (vi) that represent entities, edges (ek) that represent relationships
between entities, and global attribute (u) that represent graph-level attributes [7]. Nodes
and edges can also have attributes. Thus, any graph can be denoted as a 3-tuple
(G = u, V,E). In this context, graphs are directed, meaning they propagate information
in only one direction: from a sender node (vsk) to a receiver node (vrk). B) Different
kinds of updates within a graph. Here, the element depicted in blue signifies the updated
element, elements involved in the given update are black, and elements irrelevant to the
update are gray. Edges (ek), nodes (vi), and global attributes (u) can be updated. C)
Multiple graph network blocks (GNi) can be composed to form a graph network core
(GNcore) within which M internal processing substeps can be computed. The blocks
that form a GN can share functions and parameters or they can be independent, with
different functions and parameters. G0 represents the initial graph passed to the GNcore

and GM represents the graph transformed by the GNcore. Figure adapted from [7].
Permission pending.
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representations [7]. A graph is described by a set of nodes (vi), edges (ek) that
represent relationships between nodes, and global attribute (u) that represent
graph-level attributes [7]. Graphs are denoted as a 3-tuple (G = u, V,E) (Fig. 3A).

Three core features of graph neural networks suggest they show promise as a
framework for developing a minimal model of structure learning across domains.

GNNs are versatile. They have the capacity to represent diverse structures,
including the three primitives of structure learning (functions, features, and clusters).
This comes from the versatility of graph-structured representations (see Fig. 2B) and
from the attributes assigned at the graph, node, and edge level. The output of a GN
block can also be customized to prioritize learning over different aspects of the graph
(Fig. 3B), as appropriate for the task domain. For example, if the task requires
reasoning about interobject relations, learning over edges may be most appropriate.
Hamrick and colleagues [34] investigated human physical reasoning using a task that
involved gluing pairs of blocks together to stabilize a tower. Using a graph network with
a recurrent message-passing neural network [7], they modeled the positions and
orientations of the blocks as nodes and the presence of glue as edges, with the global
attribute corresponding to global pieces of information such as the overall stability of
the tower. They found that this GNN outperformed humans and nonrelational networks
in physical reasoning [34].

Within-block update dynamics are configurable. To describe how the
functions internal to the GN block allow for flexible dynamics, I step through how each
element is updated and how those updates are aggregated below, then summarize the
algorithm underlying one cycle of computation within a block.

A GN block has two classes of functions: update functions and aggregation functions.
Each feature of the graph has separate update functions, denoted φ:

e′k = φe(ek, vrk , vsk , u) (7)

v′i = φv(ē′i, vi, u) (8)

u′ = φu(ē′, v̄′, u) (9)

Here, each of k edges (e) is updated (e′) using the current value of the edge ek, the
receiving node vrk , the sending node vsk , and the global graph attribute u (Eqn. 7).
Each of i nodes (v) is updated (v′) using the aggregation of edges that project to that
node (ē′i, the current value of the node vi, and the global attribute u (Eqn. 8). The
global attribute (u) is updated (u′) using the aggregate of all edge updates (ē′), the
aggregate of all node updates (v̄′), and the current value of the global attribute u (Eqn.
9).

The edges projecting to each node, all edges in the graph, and all nodes of the graph
have separate aggregation functions, denoted ρ:

ē′i = ρe→v(E′i) (10)

ē′ = ρe→u(E′) (11)

v̄′ = ρv→u(V ′) (12)

Here, the set of updates for the edges between each receiving node (rk) and sending
node (sk) is denoted E′i, where E′i = {(e′k, rk, sk)}rk=i,k=1:Ne and the aggregation of
these node-specific edge updates E′i is denoted ē′i(Eqn. 10). The set of updates over all
edges within the GN block is denoted E′, where E′ = ∪iE′i = {(e′k, rk, sk)}k1:Ne and the
aggregation of these edge updates over the graph is denoted ē′ (Eqn. 11). The set of
updates over all nodes is denoted V ′ where V ′ = {vi}i = 1 : Nv and the aggregation of
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these node updates over the graph is denoted v̄′ (Eqn. 12). This aggregation of node
updates v̄′ and the aggregation of edge updates over the graph ē′ will then be used in
the next global update u.

In total, the full algorithm for computation within a GN block (Fig. 4) goes as
follows.

Given a set of edges E, a set of nodes V , and a global attribute u as inputs:

1. A graph defined by a set of edges E, a set of nodes V , and a global attribute u
(G0) is fed to the GN block.

2. For all edges, attributes are updated for all nodes according to (Eqn. 7).

3. Edge attributes are aggregated for each node (Eqn. 10).

4. Individual node attributes are updated given the edge updates aggregated for each
node (Eqn. 8).

5. Edge attributes are aggregated over nodes (Eqn. 11).

6. Node attributes are aggregated over the graph (Eqn 12).

7. The global attribute is updated using the aggregation of edge attributes over
nodes, the aggregation of node attributes over the graph, and the current global
attribute (Eqn. 9).

8. A graph with the updated set of edge attributes, the updated set of nodes, and an
updated global attribute is generated (GM ).

The flexibility lies in the attribute update functions for edges, nodes, and global
attributes, and in the method of aggregation over edges per node, the aggregation over
all edges, and in node aggregation. This within-block flexibility is important because it
allows a primitive representation of structure (Fig. 2B) to change dynamically over time.
You might imagine that, given new observations, a learner decides that the data are
more consistent with a categorically different structural form (e.g. a featural primitive
rather than a clustering primitive); within-block dynamics enable such a switch between
primitive forms.

GNNs are compositional. GNN blocks can be combined to produce more
complex architectures. The most basic form of a multi-block GNN uses two blocks, GN1

and GN2, with the output of the first acting as input to the secon to generate a final
graph G′: G′ = GN2(GN1(G)). Arbitrary numbers of GN blocks can compose a
multi-block GNN [7] (Fig. 3C). Blocks can share functions and parameters, akin to a
recurrent neural network, or have independent functions and parameters.

To summarize, I make the following claims.

• Given that graph structures can represent all three forms of established primitive
structures in human structure learning [4] (Fig. 2) and that GN blocks represent
the atomic unit of computation for a GNN, the GN block may effectively
represent primitive structural forms.

• Representing these primitive structural forms as GN blocks with adaptable
within-block configuration enables a representation of structural form to change
over time, possibly capturing dynamic shifts in structural form in response to
experience.
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• Graph neural networks allow for the combination of GN blocks with shared or
unshared update functions. This means that graph neural networks can represent
compositional structure [80], or more complex structures formed from simpler
building blocks. This is critical for generalization because compositional learning
allows agents to reason about entirely new learning problems formed from a
composite of previously learned structures [22]. Further, it seems reasonable to
expect that, even if a new learning problem only partly overlaps with a previously
learned set of simpler structures, the hypothesis generation process might be
economized (at the time of writing, I know of no explicit studies of this nature).

Critically, there is emerging empirical support for multi-block graph network
architectures leveraging combinatorial representation to improve sample efficiency and
increase the flexibility of generalization, as has been amply demonstrated in
humans [22,43,45,47,71,78–80,91]. This compositional capacity of GNNs has been
shown to result in sample-efficient combinatorial generalization in diverse domains [7].
In the realm of physical reasoning [42], GNNs can make predictions about n-body
problems, rigid-body collision, and non-rigid dynamics and then generalize to systems
with different numbers of objects and different configurations of elements [6]. Most
impressively, GNNs have been shown to recover symbolic representations of known
physical laws and have been used to discover novel physical principles; specifically, a
new analytical formula predicting the concentration of dark matter from the mass
distribution of surrounding cosmic structures was discovered, and predictions from this
formula generalized to out-of-distribution data [16]. GN-based decision policies have
also shown notable transfer [34,50,94], with a recent study demonstrating the
development of a single reinforcement learning policy to successfully control the
movement of agents of different morphologies if the agents were represented as
graph-structures with shared properties, or modules [37]. Finally, message-passing
GNNs outperform Bayesian belief propagation models when making inferences in the
context of graph-structured tasks and generalize out-of-set to larger graph structures
and graphs with different structures [105].

Despite their success, the representational capacity of GNNs can be limited.
Without additional assumptions, representations that require recursion and conditional
logic are nontrivial to represent as a graph [7]. The capacity to discriminate between
simple graph structures can be compromised in GNNs based on convolutional networks
but simpler GNNs exist that do fare well on graph classification benchmarks [104]. Care
must be taken to ensure that the GNN developed can arbitrate between graph
structures before drawing conclusions. The basis for design decisions regarding the
initial structure of the input graph is also underspecified given a particular learning
problem [7], though either 1) iterative experiments for which a prior can be plausibly
induced on the graph structure or 2) a theoretical basis for default graph structure
representations may be useful in addressing this problem. Relatedly, it’s unclear
whether graph operations are sensitive to initial conditions, or ”permutation invariant”
(e.g. would two graphs with different numbers of nodes or edges subject to the same
computational architecture result in different output graphs?) and generalization can be
limited in message-passing GNNs [23].

Using GNNs to study structure learning in the reinforcement learning context is
both a tractable and powerful framework with which to develop a minimal model of
structure learning featuring compositional inductive bias. Multi-block GNNs imbued
with compositional inductive bias have shown generalization across diverse domains of
learning. Further, they are well-suited to represent structural primitives and their
dynamics while harnessing the power of both symbolic and representational
architectures. At a pragmatic level, remaining within the sphere of reinforcement
learning is a tractable way to manipulate the structures to which humans (or agents
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Figure 4. Pseudocode for the atomic unit of computation for a graph net-
work, a block . A block takes a graph as input, performs these computations, then
outputs an updated graph. A block can represent features, clusters, and functions.
Blocks can be composed to form multi-block architectures. Figure from [7]. Permission
pending.

more generally) are sensitive using external influences. At a theoretical level,
reinforcement learning has a substantial literature on its biological realization [49],
allowing for testable hypotheses about the neural implementation of structure learning
in a reinforcement learning scenario. Finally, the relationship between
reinforcement-learning-driven structure learning and behavior can be clearly
observable [11].

Limitations and future directions

Structure learning is currently teleologically defined

Currently, structure learning is defined in terms of its functional consequences (i.e.
generalization). The problem with a functional definition of a learning phenomenon is
that it does not distinguish between causal mechanisms with the same outcome. That
said, the reason that we have this teleological definition of structure learning is because
the mechanism is not established. This leaves us in a paralyzing (circular) quandary.

For the purpose of a first pass in identifying candidate structure learning
computations, we have to deal with false positives (i.e. generalization generated by
learning processes other than structure learning). To the extent that false positives
contribute to this effort, the case for compositional inductive bias as a necessary
computational feature of structure learning is compromised. Integrating over these
theoretical perspectives may minimize the influence of net false positives, but, to avoid
this issue, it is important to begin to whittle the space of viable hypotheses.

Under the assumption that studying learning dynamics improves the identifiability of
candidate computational mechanisms, we need to look at how structure learning evolves
to better arbitrate between alternative computational explanations. Moreover, studying
both the neural and behavioral dynamics of structure learning may even further reduce
the degeneracy problem to better triangulate the viable computational hypotheses.
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Structure learning without reinforcement learning

Structure learning in humans is often studied in reinforcement learning
contexts [12,29,56,92,93,96] for pragmatic reasons, such as the tractability of
experimental manipulation and the extent of the current literature on its neuroscientific
basis [49]. Further, the rich historical links between reinforcement learning, machine
learning, and computer science [85,86] promote a reinforcement learning-based approach
to theoretical development. As a consequence, the algorithms designed to learn
structure have often exploited reinforcement learning computational architectures or
derivatives thereof [56,59].

However, structures are not restricted to learning via reinforcement. There is
evidence for structure learning in the formation of implicit forward models in motor
learning [96] which are thought to be less sensitive to reinforcement learning signals [87].
Further, the formation of learning sets in nonhuman animals spans a set of domains
without an established consensus as to their reception to reinforcement
learning [35,76,95]. To the extent that structure learning exists in learning systems that
do not interact with reinforcement learning, this review and its conclusions are limited.

Exploration algorithms guide structured representations and
vice versa

To the extent that exploration is a source of data acquisition, it is essential to detecting
statistical regularities in our environment. From a computational perspective,
exploration balances a bias-variance tradeoff in action selection space, functioning to
avoid local minima in the acquisition of information [99] or reward [60]. Forming a
global estimate of the environment should aid in adapting to unexpected states with
similar properties. Indeed, imbuing an artificial agent with a curiosity signal that
rewards reinforcement prediction errors assists structure learning and aids generalization
to sparse reward contexts [63]. Similarly, automated structure discovery using
intrinsically motivated exploration algorithms results in diverse pattern discovery in
self-organizing systems, and adapts using minimal user feedback [70]. The existence of
random exploration [99], separable from the directed pursuit of information, suggests a
biological imperative to maintain behavioral variability. Broadly, the variability inherent
to biological learning systems [20, 81] provides a persistent level of behavioral flexibility;
a faint echo of alternatives.

Importantly, emerging evidence provides empirical support for the notion that
generalization guides future exploration [77,100]. Altogether, this suggests a
bidirectional relationship between exploration as a source of data for detecting
environmental structure and generalization as a sculpting influence on exploration (a
direct influence on the data one has to operate over). The computational models
considered in this paper do not explicitly address the role of exploration in the discovery
of structural form. To the extent that exploration and generalization influence one
another, the computational models described here do not capture the dynamics of
structure learning.

Conclusions

Predominant computational models of structure learning describing diverse forms of
structure discovery prominently feature compositional inductive bias. Computational
architectures without this bias are sample inefficient and relatively inflexible in
generalization, suggesting the possibility that it is a necessary computational feature.
Lastly, compositional inductive bias is determinable: it can be refined for the purpose of
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experiment and further theoretical development. Thus, a model featuring compositional
inductive bias meets the criteria for a minimal model approach to explanation. Graph
networks, which balance representational structure with representational emergence,
enable compositional generalization and present an opportunity to study the
hierarchical dynamics of structure learning. Assuming that compositional inductive bias
is a necessary feature of structure learning across learning domains, this paper posits
that using graph networks in the reinforcement learning context offers a powerful and
tractable framework for developing a minimal model of structure learning and
furthering our understanding of structure learning as a whole.

Call for a taxonomy of structure learning

*

Open questions

• How can we interrogate the dynamics of structure learning to improve
identifiability?

• What is the relationship between curiosity-driven exploration and structure
learning?

• What are the factors that influence the mutual relationship between explo-
ration and structure learning?

• How do structured representations emerge without reinforcement learning?

• What are the limitations of drawing an isomorphism between current
analytical approaches and the primitives of structural form?

• Where does the pool of hypotheses regarding the set of structural forms
relevant to a given learning problem come from?

• What is the taxonomy of structure learning?
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Glossary

Structure learning The abstraction of relational invariance from data. Depending on
the context, structure learning may be conflated with the idea of learning structural
form. Functions, features, and clusters are hypothesized to be the three primitive forms
of structure. Primitive structures can be combined to compose more complex structures.
form The categorical type of model learned (e.g. function, feature, cluster).
structure A specific instantiation of the form learned. This can also be thought of
as parameterizing a model.
data The set of observations from which inferences of structure and form are drawn..
inductive bias The set of assumptions with which a learner approaches a learning
problem. In the context of structure learning, inductive bias refers to the set of
models considered by the learner that allows them to make adaptive inferences
beyond the data they observe. In the context of Bayesian models of cognition,
inductive bias may also be called a prior. Relational inductive bias refers to
assumptions that impose constraints on learned relationships.
compositionality The idea that a complex model or structure can be decomposed
into simpler constituent expressions. Similarly, constituent expressions can compose a
complex model or structure. Compositionality enables combinatorial generalization,
or the capacity to make inferences under novel scenarios by recombining simpler
learned relationships.
hypothesis space The set of hypotheses most probably considered as a function of
the structural form learned. Note that this concept is linked to C.S. Peirce’s notion of
abductive inference, in which the set of hypotheses considered is constrained by
previous belief [64]. Viewed in light of Bayesian theory, abduction can also be
conceptualized as a probabilistic form of inductive inference.
sample efficiency The amount of experience (or number of relational observations)
needed to learn a given structural form or model.
bias-variance tradeoff Bias is the degree to which a model makes assumptions
regarding the structure of the data. The stronger the set of assumptions, the greater
the likelihood of underfitting the data. Variance is the degree to which the data
informs the model. The greater the variance, the greater the likelihood of overfitting
the data. Bias and variance are inversely proportional to one another [19], and a
balance between bias and variance is necessary to minimize generalization error.
generalization The use of prior learning to guide learning in situations judged to be
similar to previous learning contexts.

Nonparametric Bayesian Hierarchical Models A model that leverages Bayes’
rule to learn multiple levels of abstraction with distributions of arbitrary structure.
These models infer the complexity of the model from the given data.

nonparametric model A model defined by arbitrary distributions (not confined to
a normal distribution)..
parametric model A model defined by distributions with a fixed number of
parameters (e.g. mean and variance in the case of a normal distribution).
hierarchical model A model describing multiple levels of organization or
abstraction).
prior probability The degree of belief in a hypothesis prior to collecting new
observations.
likelihood The probability of observing data if a given hypothesis is correct.
posterior probability The degree of belief in a hypothesis after collecting new
observations. This is a function of the likelihood and the prior as described in
Nonparametric Hierarchical Bayesian Models (NPHBM).
Bayes’ rule At its heart, simply a formula for calculating the probability of an event
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given prior knowledge of related conditional probabilities. In cognitive science, this
rule has been extended to provide a normative standard for updating beliefs in the
face of evidence. Operates over the likelihood and the prior probability to give a
posterior probability .
subgoals A learning problem can be decomposed into simpler learning problems, or
subgoals. Subgoals can have their own reward functions and policies. Solving
subgoals can be an economical way to solve the full learning problem and learning
subgoals instead of how to solve the composite learning problem is conducive to
compositional generalization. The policies developed to solve subgoals are called
options in the reinforcement learning context.

cognitive maps The systematic organization of spatial memory and, more abstractly,
the relationships between objects or events.
latent learning A form of learning not immediately expressed but later invoked
upon recognition of a similar context with sufficient incentive.
stimulus-response association An automatic, learned behavior tied to a
particular physical stimulus. Stands in contrast to latent learning.

successor representation A form of reinforcement learning that predicts transitions
between states to estimate the optimal trajectory to reward. To do this, it combines an
estimate of how often future states are expected to be visited in the future with an
estimate of their reward. Occupies an intermediate space between model-based and
model-free reinforcement learning to balance flexibility and computational efficiency.
reinforcement learning The process by which an agent learns to predict the
actions that maximize long-run reward given the state of the environment.
model-based A relatively flexible, slow form of reinforcement learning in which
action values are recomputed according to an internal model of state transitions.
Computationally expensive relative to model-free reinforcement learning.
model-free A relatively inflexible, fast form of reinforcement learning in which the
long-run value of actions is precomputed and cached. At the time of a decision, the
cached value of an action is retrieved.
temporal difference learning A model-free approach to gradually learning and
updating state-action values.
state A complete description of the environment.
Offline replay A memory process in which the hippocampal network generates
patterns of activation that represent compressed versions of previous experience while
off-task.

artificial neural networks A computational model loosely based on the concept of a
network of neurons. Organized in layers of interconnected nodes, with an input layer,
one or more hidden layers which operate over their successive inputs, and an output
layer. A learning rule modifies the weights of the connections between elements as a
function of the inputs to each layer and nodes contain an activation function to
determine their output behavior.
recurrent neural network An artificial neural network with nodes that send
feedback to one another. This allows previous outputs to be used as inputs, allowing
for recent historical information to influence computation.
Long Short-Term Memory A type of recurrent neural network. An LSTM cell
can process sequential data. Often a LSTM unit is composed of a cell, an input
gate, an output gate, and a forget gate. These gates regulate the passage of
information into and out of the cell.

graph neural network Artificial neural networks that operate on graph-structured
representations.
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graph-structured representations Mathematical structures used to model
relationships between nodes. Denoted as a 3-tuple G = (u, V,E), where u is a global
attribute, V is the set of nodes, and E is the set of edges connecting the nodes.
nodes The entities considered..
edges The connections between nodes. An edge can represent the relationship
between entities, or nodes.
global attribute Graph-level properties. Nodes and edges may also have attributes.
graph network block The elemental unit of computation in a graph network.
Takes a graph as input, performs computations on the graph, and then outputs a
transformed graph. Graph network blocks can be composed to create multi-block
architectures.
multi-block graph network architectures Complex architectures can be
composed from graph network blocks. In multi-block architectures, the output of one
GN block can be passed as the input graph to another GN block, even with different
within-block structures. Blocks can have independent functions and/or parameters or
reused functions and/or parameters.
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